Stimulation of cGMP signalling protects coronary endothelium against reperfusion-induced intercellular gap formation.
نویسندگان
چکیده
AIMS Ischaemia-reperfusion provokes barrier failure of the coronary microvasculature, impeding functional recovery of the heart during reperfusion. The aim of the present study was to investigate whether the stimulation of cGMP signalling by activation of soluble guanylyl cyclase (sGC) can reduce reperfusion-induced endothelial intercellular gap formation and to determine whether this is due to an influence on endothelial cytosolic Ca(2+) homeostasis during reperfusion. METHODS AND RESULTS Experiments were performed with cultured coronary endothelial monolayers and isolated saline-perfused rat hearts. HMR1766 (1 micromol/L) or DEAnonoate (0.5 micromol/L) were used to activate sGC. After exposure to simulated ischaemic conditions, reperfusion of endothelial cells led to a pronounced increase in cytosolic calcium levels and intercellular gaps. Stimulation of cGMP signalling during reperfusion increased Ca(2+) sequestration in the endoplasmic reticulum (ER) and attenuated the reperfusion-induced increase in cytosolic [Ca(2+)]. Phosphorylation of phospholamban was also increased, indicating a de-inhibition of the ER Ca(2+) pump (SERCA). Reperfusion-induced intercellular gap formation was reduced. Reduction of myosin light chain phosphorylation indicated inactivation of the endothelial contractile machinery. Effects on cytsolic Ca(2+) and gaps were abrogated by inhibition of cGMP-dependent protein kinase (PKG) with KT5823. In reperfused hearts, stimulation of cGMP signalling led to decreased oedema development. CONCLUSION sGC/PKG activation during reperfusion reduces reperfusion-induced endothelial intercellular gap formation by attenuation of cytosolic calcium overload and reduction of contractile activation in endothelial cells. This mechanism protects the heart against reperfusion-induced oedema.
منابع مشابه
Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells.
OBJECTIVE Ischemia-reperfusion provokes barrier failure of the coronary microvasculature, leading to myocardial edema development that jeopardizes functional recovery of the heart during reperfusion. Here, we tested whether adenosine 5'-triphosphate (ATP), either exogenously applied or spontaneously released during reperfusion, protects the endothelial barrier against an imminent reperfusion in...
متن کاملMyocardial protection against reperfusion injury: the cGMP pathway.
Reperfusion injury may cause myocardial cell death and limit the benefit achieved by restoration of coronary artery patency in patients with acute myocardial infarction. The mechanism includes altered Ca(2+) handling with cytosolic and mitochondrial Ca(2+) overload, Ca(2+)- and ATP-dependent hypercontraction, cytoskeletal fragility, mitochondrial permeability transition and gap junction-mediate...
متن کاملnhibition of contractile activation reduces reoxygenation - induced q endothelial gap formation * ̈ ̈
Objective: Barrier function of coronary endothelium becomes disturbed by ischemia–reperfusion. We investigated the mechanism of reperfusion-induced endothelial gap formation in monolayers of cultured endothelial cells (CEC) of the rat, exposed to simulated ischemia 21 (40 min anoxia, pH 6.4) and reperfusion (30 min reoxygenation, pH 7.4). Methods: Cytosolic Ca (fura-2) and intercellular gap o o...
متن کاملInhibition of contractile activation reduces reoxygenation-induced endothelial gap formation.
OBJECTIVE Barrier function of coronary endothelium becomes disturbed by ischemia-reperfusion. We investigated the mechanism of reperfusion-induced endothelial gap formation in monolayers of cultured endothelial cells (CEC) of the rat, exposed to simulated ischemia (40 min anoxia, pH(o) 6.4) and reperfusion (30 min reoxygenation, pH(o) 7.4). METHODS Cytosolic Ca(2+) (fura-2) and intercellular ...
متن کاملA poly(ADP-ribose) synthetase inhibitor, benzamide protects smooth muscle cells but not endothelium against ischemia/reperfusion injury in isolated guinea-pig heart.
Activation of the nuclear enzyme poly(ADP-ribose) synthetase (PARS) is important in the cellular response to oxidative stress. During ischemia and reperfusion (I/R) increased free radical production leads to DNA breakage that stimulates PARS which in turn results in an energy-consuming metabolic cycle and initiation of the apoptotic process. Previous studies have reported that PARS inhibition c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2009